Topology

Problem Sheet 6

Deadline: 4 June 2024, 15h

Exercise 1 (3 Points).

Show that the following conditions are equivalent for a topological space (X, \mathcal{T}) :

- a) The space is Hausdorff.
- b) Every filter converges to at most one point.
- c) Every ultrafilter converges to at most one point.

Exercise 2 (6 Points).

- a) Is the subset [0,1] compact in the Sorgenfrey line?
- b) If A is a subset of the Sorgenfrey line, show the subset of A of non-limit points is countable.
- c) Conclude that every compact subset of the Sorgenfrey line must be countable and hence with empty interior.

Hint: If A is uncountable, show that there is some n in \mathbb{N} with $A \cap (n, \infty)$ uncountable. Deduce that A contains a strictly increasing sequence.

Exercise 3 (3 Points).

Show that every compact Hausdorff space is *normal*: every two disjoint closed subset A and B can be separated by open subsets, that is, there are open subsets U and V with $A \subset U, B \subset V$ and $U \cap V = \emptyset$.

Exercise 4 (8 Points).

Let $f : I \to X$ be a net in the topological space (X, \mathcal{T}) , where I is a fixed directed partially ordered set. Set $A = \{x_{\alpha}\}_{\alpha \in I}$ with $a_{\alpha} = f(\alpha)$. Given an ultrafilter \mathcal{U} on I, we say that the point xin X is a \mathcal{U} -limit of the net $(x_{\alpha})_{\alpha \in I}$ if $\{\alpha \in I \mid x_{\alpha} \in U\}$ belongs to \mathcal{U} for every neighbourhood Uof x.

- a) Show that cl(A) is the collection of all the \mathcal{U} -limits of $(x_{\alpha})_{\alpha \in I}$, as \mathcal{U} runs among all possible ultrafilters on I.
- b) Assume now that $I = \mathbb{Z}$. For which ultrafilters does the net $n \mapsto (-1)^n$ has a limit in the euclidean line \mathbb{R} ?

Assume now that $X = \mathbb{R}$ with the euclidean topology. A net $(x_{\alpha})_{\alpha \in I}$ is \mathcal{U} -bounded if there is some $M \ge 0$ in \mathbb{R} such that $\{\alpha \in I \mid |x_{\alpha}| \le M\} \in \mathcal{U}$.

- c) If the net $(x_{\alpha})_{\alpha \in I}$ is \mathcal{U} -bounded by M, show that the set $Z = \{y \in \mathbb{R} \mid \{\alpha \in I \mid x_{\alpha} \leq y\} \in \mathcal{U}\}$ is not empty and bounded from below.
- d) Conclude that the \mathcal{U} -bounded net $(x_{\alpha})_{\alpha \in I}$ has a \mathcal{U} -limit x in the interval [-M, M].

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM ENTSPRECHENDEN FACH IM KELLER DES MATHEMATISCHEN INSTITUTS.